Single residue within the antigen translocation complex TAP controls the epitope repertoire by stabilizing a receptive conformation.

نویسندگان

  • Christoph Baldauf
  • Susanne Schrodt
  • Meike Herget
  • Joachim Koch
  • Robert Tampé
چکیده

The recognition of virus infected or malignantly transformed cells by cytotoxic T lymphocytes critically depends on the transporter associated with antigen processing (TAP), which delivers proteasomal degradation products into the endoplasmic reticulum lumen for subsequent loading of major histocompatibility complex class I molecules. Here we have identified a single cysteinyl residue in the TAP complex that modulates peptide binding and translocation, thereby restricting the epitope repertoire. Cysteine 213 in human TAP2 was found to be part of a newly uncovered substrate-binding site crucial for peptide recognition. This residue contacts the peptide in the binding pocket in an orientated manner. The translocation complex can be reversibly inactivated by thiol modification of this cysteinyl residue. As part of an unexpected mechanism, this residue is crucial in complementing the binding pocket for a given subset of epitopes as well as in maintaining a substrate-receptive conformation of the translocation complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries.

Transport of peptides across the membrane of the endoplasmic reticulum for assembly with MHC class I molecules is an essential step in antigen presentation to cytotoxic T cells. This task is performed by the major histocompatibility complex-encoded transporter associated with antigen processing (TAP). Using a combinatorial approach we have analyzed the substrate specificity of human TAP at high...

متن کامل

A Detailed Analysis of the Murine TAP Transporter Substrate Specificity

BACKGROUND The transporter associated with antigen processing (TAP) supplies cytosolic peptides into the endoplasmic reticulum for binding to major histocompatibility complex (MHC) class I molecules. Its specificity therefore influences the repertoire of peptides presented by MHC molecules. Compared to human TAP, murine TAP's binding specificity has not been characterized as well, even though m...

متن کامل

Murine Transporter Associated with Antigen Presentation (TAP) Preferences Influence Class I–restricted T Cell Responses

The transporter associated with antigen presentation (TAP) complex shuttles cytosolic peptides into the exocytic compartment for association with nascent major histocompatibility complex class I molecules. Biochemical studies of murine and human TAP have established that substrate length and COOH-terminal residue identity are strong determinants of transport efficiency. However, the existence o...

متن کامل

Design of agonistic altered peptides for the robust induction of CTL directed towards H-2Db in complex with the melanoma-associated epitope gp100.

Immunogenicity of tumor-associated antigens (TAA) is often weak because many TAA are autoantigens for which the T-cell repertoire is sculpted by tolerance mechanisms. Substitutions at main anchor positions to increase the complementarity between the peptide and the MHC class I (MHC-I) binding cleft constitute a common procedure to improve binding capacity and immunogenicity of TAA. However, suc...

متن کامل

Cytosolic processing of proteasomal cleavage products can enhance the presentation efficiency of MHC-1 epitopes.

The vertebrate immune system is able to detect abnormal body cells by the specific repertoire of 8 - 12 residues long peptides (= epitopes or peptide antigens) presented at the cell surface by the MHC-1 molecule complex. The generation of an epitope starts with the degradation of endogenous proteins into primary oligomeric fragments by cytosolic proteases, predominantly the proteasome. These pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 20  شماره 

صفحات  -

تاریخ انتشار 2010